Answer:
A. 4(x - 4) + 2(3x² + 3x - 20)
C. (11x² + 7x - 55)-(5x² - 3x + 1)
F. (3x² + 5x - 28) + (3x² + 5x - 28)
Step-by-step explanation:
Given:
(3x-7)(2x+8)
= 6x² + 24x - 14x - 56
=6x² + 10x - 56
A. 4(x - 4) + 2(3x² + 3x - 20)
= 4x - 16 + 6x² + 6x - 40
= 6x² + 10x - 56
B. (3x² + 5x - 28) - (2x² + 4x + 28)
= 3x² + 5x - 28 - 2x² - 4x - 28
= x² + x - 56
C. (11x² + 7x - 55)-(5x² - 3x + 1)
= 11x² + 7x - 55 - 5x² + 3x - 1
= 6x² + 10x - 56
D. 4(x - 4) - 2(3x² + 3x - 20)
= 4x - 16 - 6x² - 6x + 40
= - 6x² - 2x + 24
E. (11x² + 7x - 55)-(5x² - 3x + 2)
= 11x² + 7x - 55 - 5x² + 3x - 2
= 11x² - 5x² + 7x + 3x - 55 - 2
= 6x² + 10x - 57
F. (3x² + 5x - 28) + (3x² + 5x - 28)
= 3x² + 5x - 28 + 3x² + 5x - 28
= 6x² + 10x - 56
Answer:
5, 7
Step-by-step explanation:
Answer: point W
Step-by-step explanation:
Answer:
166
Step-by-step explanation:
5/2=2.5
415/2.5
=166
Answer:
The equation for an ellipse centered at the origin with foci at (-3, 0) and (+3, 0) and co-vertices at (0, -4) and (0, +4) is:
Step-by-step explanation:
An ellipse center at origin is modelled after the following expression:
Where:
, - Major and minor semi-axes, dimensionless.
The location of the two co-vertices are (0, - 4) and (0, + 4). The distance of the major semi-axis is found by means of the Pythagorean Theorem:
The length of the major semi-axes can be calculated by knowing the distance between center and any focus (c) and the major semi-axis. First, the distance between center and any focus is determined by means of the Pythagorean Theorem:
Now, the length of the minor semi-axis is given by the following Pythagorean identity:
The equation for an ellipse centered at the origin with foci at (-3, 0) and (+3, 0) and co-vertices at (0, -4) and (0, +4) is: