Answer:
Explanation:
Let the balls collide after time t .
distance covered by falling ball
s₁ = v₀ t + 1/2 g t²
distance covered by rising ball
s₂ = v₀ t - 1/2 g t²
Given ,
s₁ + s₂ = D
D = v₀ t + 1/2 g t² + v₀ t - 1/2 g t²
= 2v₀ t
t = D / 2v₀
s₂ = v₀ t - 1/2 g t²
= v₀ x D / 2v₀ - (1/2) x g x D² / 4v₀²
= D / 2 - gD² / 8 v₀²
Answer: the most potential energy == 5 kg book, 2 m from the ground= 98 Joules
Explanation:
potential energy = m g h
m = mass
g = acceleration due gravity = 9.8 m/s²
h = distance above ground
1. Pe₁ = 1 kg x 2 m x g = 2 g
2. Pe₂ = 5 kg x 2 m x g = 10 g = 10 kg m x 9,8 m/s² = 98 Joules
3. Pe₃ = 1 kg x 0,5 m x g = 0,5 g
4. Pe₄ = 5 kg x 0.5 m x g = 2,5 g
10 > 2,5 > 2 >0,5
The work done by force on a spring hung from the ceiling will be 1.67 J
Any two things with mass are drawn together by the gravitational pull. We refer to the gravitational force as attractive because it consistently seeks to draw masses together rather than pushing them apart.
Given that a spring is hung from the ceiling with a 2.0-kg mass suspended hung from the spring extends it by 6.0 cm and a downward external force applied to the mass extends the spring an additional 10 cm.
We need to find the work done by the force
Given mass is of 2 kg
So let,
F = 2 kg
x = 0.1 m
Stiffness of spring = k = F/x
k = 20/0.006 = 333 n/m
Now the formula to find the work done by force will be as follow:
Workdone = W = 0.5kx²
W = 0.5 x 333 x 0.1²
W = 1.67 J
Hence the work done by force on a spring hung from the ceiling will be 1.67 J
Learn more about force here:
brainly.com/question/12970081
#SPJ4
Answer:
the force will increase by a factor 2.25
Explanation:
The gravitational force between the two stars is given by:

where
G is the gravitational constant
m1, m2 are the masses of the two stars
r is the distance between the stars
If the distance is decreased by one-third, it means that the new distance is 2/3 of the previous distance

So the new force will be

So, the force will be 2.25 times the previous value.