Answer:
100
Explanation:
take note that v=d/t (velocity is distance over(divided by) time, so in this case it would be 200 (distance) divided by 2 (time) = 100
Answer:
a = √ (a_t² + a_c²)
a_t = dv / dt
, a_c = v² / r
Explanation:
In a two-dimensional movement, the acceleration can have two components, one in each axis of the movement, so the acceleration can be written as the components of the acceleration in each axis.
a = aₓ i ^ + a_y j ^
Another very common way of expressing acceleration is by creating a reference system with a parallel axis and a perpendicular axis. The axis called parallel is in the radial direction and the perpendicular axis is perpendicular to the movement, therefore the acceleration remains
a = √ (a_t² + a_c²)
where the tangential acceleration is
a_t = dv / dt
the centripetal acceleration is
a_c = v² / r
Answer:
Well first for criteria think what would the rover need in order to sustain itself on Venus. And for constraints think of anything that could possibly affect the rover( ex: gasses, active volcanoes)
Explanation:
Criteria: Make the rover self sustainable, and allow the rover to have a mission on Venus( ex: collect rock samples)
Constraints, as I mentioned above gasses, and active volcanoes.
I hope this helps! :)
Answer:
61.85 ohm
Explanation:
L = 12 m H = 12 x 10^-3 H, C = 15 x 10^-6 F, Vrms = 110 V, R = 45 ohm
Let ω0 be the resonant frequency.


ω0 = 2357 rad/s
ω = 2 x 2357 = 4714 rad/s
XL = ω L = 4714 x 12 x 10^-3 = 56.57 ohm
Xc = 1 / ω C = 1 / (4714 x 15 x 10^-6) = 14.14 ohm
Impedance, Z = 
Z = \sqrt{45^{2}+\left ( 56.57-14.14 )^{2}} = 61.85 ohm
Thus, the impedance at double the resonant frequency is 61.85 ohm.