Answer:
Gravity is so strong that even light cannot escape a black hole.
Explanation:
Explanation:
can you make your question understandable?
I'll try to solve it
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
Nitrogen can make bonds with other atoms.. Typically though it only makes 3 bonds, so it fills its octet.
The question is incomplete, complete question is :
In an organic structure, you can classify each of the carbons as follows: Primary carbon (1°) = carbon bonded to just 1 other carbon group Secondary carbon (2°) = carbon bonded to 2 other carbon groups Tertiary carbon (3°) = carbon bonded to 3 other carbon groups Quaternary carbon (4°) = carbon bonded to 4 other carbon groups How many carbons of each classification are in the structure below? How many total carbons are in the structure? How many primary carbons are in the structure? How many secondary carbons are in the structure? How many tertiary carbons are in the structure? How many quaternary carbons are in the structure?
Structure is given in an image?
Answer:
There are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
Explanation:
Total numbers of carbon = 10
Number of primary carbons that is carbon joined to just single carbon atom = 6
Number of secondary carbons that is carbon joined to two carbon atoms = 1
Number of tertiary carbons that is carbon joined to three carbon atoms = 2
Number of quartenary carbons that is carbon joined to four carbon atoms = 1
So, there are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.