Answer:

Explanation:
Given that:

From equation (3) , multiplying (-1) with equation (3) and interchanging reactant with the product side; we have:

Multiplying (2) with equation (4) ; we have:

From equation (1) ; multiplying (-1) with equation (1); we have:

From equation (2); multiplying (3) with equation (2); we have:

Now; Adding up equation (5), (6) & (7) ; we get:



<u> </u>

<u> </u>
<u />
(According to Hess Law)


The effective nuclear charge is an innate property of a specific element. It is the pull of force that an electron feels from the nucleus. It is related to the valence electron by the equation: Z* = Z-S, where Z* is the effective nuclear charge, Z is the atomic number and S is the shielding constant.
For the following elements in the choices, these are their values of Z*:
Aluminum - +12.591
Beryllium - +1.912
Hydrogen - +1
Carbon - +4
The effective nuclear charge of Boron is +3. Thus, the answers are Aluminum and Carbon.
Answer:
a. 1.12 L
Explanation:
Step 1: Write the balanced equation for the photosynthesis
6 CO₂(g) + 6 H₂O(l) ⇒ C₆H₁₂O₆(s) + 6 O₂(g)
Step 2: Calculate the moles corresponding to 2.20 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
2.20 g × 1 mol/44.01 g = 0.0500 mol
Step 3: Calculate the moles of O₂ produced
The molar ratio of CO₂ to O₂ is 6:6. The moles of O₂ produced are 6/6 × 0.0500 mol = 0.0500 mol
Step 4: Calculate the volume occupied by 0.0500 moles of O₂ at STP
At STP, 1 mole of O₂ occupies 22.4 L.
0.0500 mol × 22.4 L/1 mol = 1.12 L
Answer:
Given molecules are vinegar and triglycerides.
Explanation:
The dipole is a vector quantity and it is heading from less electronegative atom to more electronegative atom in a polar covalent bond.
The structures and the bond dipoles in the given molecules are shown below: