Answer: im thinking its gonna be d.C2H6 and also
the explanation is on the research i had did before i had answered this question so i really hope this help :)
Explanation:
Ar = van de waals forces or london forces
C
H
4
= van de waals forces or london forces
HCl=permanent dipole-dipole interactions
CO = permanent dipole-dipole interactions
HF = hydrogen bonding
N
a
N
O
3
= permanent dipole-dipole interactions
C
a
C
l
2
= van de waals forces or london forces
Answer: As the temperature of a molecular system increases, the kinetic energy of molecules also increase. Also as the temperature of a molecular system decreases, the kinetic energy of the molecules will also decrease.
Explanation:
James Clerk Maxwell developed the kinetic-molecular theory (KMT) of gases. In this theoey, five assumptions concerning an ideal gas was made. One of the them was that," the average kinetic energy of the gas molecules is proportional to the temperature of the gas". This simply means that a s the temperature of a molecular system increases, the kinetic energy of molecules also increase. Also as the temperature of a molecular system decreases, the kinetic energy of the molecules will also decrease.
Also another scientist known as Rudolf Clausius incorporated energy into the kinetic theory. He proposed that heat is a form of energy that affects the temperature of matter by changing the motion of molecules in matter.
Heat is defined as the flow of energy which is caused by difference in temperature.
In conclusion, when the temperature of a system is increased, the collision of the molecules with one another and the walls of their container increases as more molecules gain more heat energy at higher temperature. While as the temperature of the system decreases, the collision of the molecules will also decrease as molecules lose heat energy at lower temperature.
Mass of Oxygen required : 24 grams
<h3>Further explanation</h3>
Given
3 moles of H
1.5 moles of O
3 moles of H₂O
Required
Mass of O
Solution
Reaction
2H₂ + O₂ ⇒ 2H₂O
Mass of Oxygen for 1.5 moles of O :
= mol x Ar O
= 1.5 moles x 16 g/mol
= 24 grams
First you need to find the amount of mass of Na2CO3 in one moles
(Use periodic chart)
Na= 22.99 x 2 = 45.98
C = 12.01
O = 16.00 x 4 = 64.00
Add the molar masses together to get 121.99
To find how many grams are in 4 moles, times 121.99 by 4
This gives you 487.96
But the questions asks for the answer to be in kilograms nor grams, to change into kilograms divide by 1000
This gets you the answer: 0.49 kg