Answer:
3 M
Explanation:
Given data
- Moles of sodium hydroxide (solute): 5 moles
- Volume of solution: 2 liters
We can calculate the molar concentration, or molarity (M), of the solution using the following expression.
M = moles of solute / volume of solution (in liters)
M = 5 moles / 2 L
M = 2.5 M ≈ 3 M (if we round off to 1 significant figure)
Answer:
Explanation:
The expected product is MgO, so the 1-to-1 mole ratio Mg to O in the product is all that is required.
Answer:
number of moles = 6.393 moles
Explanation:
One mole of any substance contains Avogadro's number (6.022 * 10^23) of atoms.
Therefore, to know the number of moles that contain 3.85 * 10^24 atoms, all we have to do is cross multiplication as follows:
1 mole ......................> 6.022 * 10^23
?? moles ..................> 3.85 * 10^24
number of moles = (3.85 * 10^24 *1) / (6.022 * 10^23)
number of moles = 6.393 moles
Hope this helps :)
Answer:
a) 2NaOH(aq) + CuSO4(aq) -------------> Cu(OH)2(s) + Na2SO4(aq)
b) Ca(OH)2(aq) + CO2(g) --------------> CaCO3 + H2O (this is already balanced)
c) Pb(NO3)2 + H2SO4 --------> PbSO4 + 2HNO3.
d) 2KNO3 ------> 2KNO2 + O2
e) H2SO4 + 2(NaOH) -----> Na2SO4 + 2(H2O)
f) Ca(NO3)2(aq) + (NH4)2CO3(aq) ----------------> CaCO3(s) + 2NH4NO3(aq)
Because potassium is a gas that can evolve