Answer:
1:16
Explanation:
The ground state of an electron on the planet is n = 4 compared the ground state of an electron at n =1. For a hydrogen atom, the electron energy level is given as:


Hence the ratio of their ionization energies is 1:16
Answer:
Explanation:
i don't know if this is 100% correct but i think it's inertia
Answer:
= 100kJ
Explanation:
The reverse reaction's activation energy of a reaction is the activation energy of the forward reaction plus ΔH of the reaction:
Ea of forward reaction =75kJ
∆H = -175 kJ/mol
Ea of reverse reaction = 75 +(-175)
= 100kJ
Note that a reverse reaction is one which can proceed in both direction depending on the conditions.
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M
<span>The correct answer is A, the ligt-dependent reactions. These reactions are responsible for the production of glucose molecules, by the utilization of carbon dioxide, and water along with the sunlight. Glucose is then broken down during resiration process, for the production of ATP in mitochondria.</span><span />