As frequency decreases , the wavelength will increase !!
frequency= speed of light ÷ wavelength
( inverse relationship )
The highest trophic level has the least available energy in kilojoules.
Even though the food web is not shown in the question, but we know that energy decreases steadily as it is passed on from one trophic level to the next according to the second law of thermodynamics.
Energy enters into the system from the sun. The primary producers utilize this energy to produce food. As plants are eaten by animals, this energy is transferred along the food web an diminishes at each higher trophic level.
At the highest trophic level, the the least available energy in kilojoules in this food web is found.
Learn more: brainly.com/question/2233704
Answer:
Explanation:
Let the plastic rod extends from - L to + L .
consider a small length of dx on the rod on the positive x axis at distance x . charge on it = λ dx where λ is linear charge density .
It will create a field at point P on y -axis . Distance of point P
= √ x² + .15²
electric field at P due to small charged length
dE = k λ dx x / (x² + .15² )
Its component along Y - axis
= dE cosθ where θ is angle between direction of field dE and y axis
= dE x .15 / √ x² + .15²
= k λ dx .15 / (x² + .15² )³/²
If we consider the same strip along the x axis at the same position on negative x axis , same result will be found . It is to be noted that the component of field in perpendicular to y axis will cancel out each other . Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L
E = ∫ k λ .15 / (x² + .15² )³/² dx
= k λ x L / .15 √( L² / 4 + .15² )
At stp (standard temperature and pressure), the temperature is T=0 C=273 K and the pressure is p=1.00 atm. So we can use the ideal gas law to find the number of moles of helium:

where p is the pressure (1.00 atm), V the volume (20.0 L), n the number of moles, T the temperature (273 K) and

the gas constant. Using the numbers and re-arranging the formula, we can calculate n: