Answer:
The horizontal distance covered by the firework will be ![\frac{1876.8}{g}](https://tex.z-dn.net/?f=%5Cfrac%7B1876.8%7D%7Bg%7D)
Explanation:
Let acceleration due to gravity on the planet be g, initial velocity of the firework be u and angle made with the horizontal be ∅.
writing equation of motion in vertical direction:
![v_{y}=u_{y}+(-g) t](https://tex.z-dn.net/?f=v_%7By%7D%3Du_%7By%7D%2B%28-g%29%20t)
![u_{y}= u\sin \phi](https://tex.z-dn.net/?f=u_%7By%7D%3D%20u%5Csin%20%5Cphi)
and ![v_{y}=0](https://tex.z-dn.net/?f=v_%7By%7D%3D0)
therefore ![\frac{u\sin \phi }{g} =t](https://tex.z-dn.net/?f=%5Cfrac%7Bu%5Csin%20%5Cphi%20%7D%7Bg%7D%20%3Dt)
writing equation of motion in horizontal direction:
![s_{x}=u_{x}t](https://tex.z-dn.net/?f=s_%7Bx%7D%3Du_%7Bx%7Dt)
![u_{x} = u\cos \phi](https://tex.z-dn.net/?f=u_%7Bx%7D%20%3D%20u%5Ccos%20%5Cphi)
therefore the equation becomes ![s_{x}=\frac{u^{2} \sin \phi \cos \phi}{g}](https://tex.z-dn.net/?f=s_%7Bx%7D%3D%5Cfrac%7Bu%5E%7B2%7D%20%20%20%5Csin%20%5Cphi%20%20%5Ccos%20%5Cphi%7D%7Bg%7D)
therefore horizontal distance traveled =![\frac{u^{2}\sin 2\alpha \phi }{2g}=\frac{1876.8}{g}\frac{m}{s}](https://tex.z-dn.net/?f=%5Cfrac%7Bu%5E%7B2%7D%5Csin%202%5Calpha%20%5Cphi%20%7D%7B2g%7D%3D%5Cfrac%7B1876.8%7D%7Bg%7D%5Cfrac%7Bm%7D%7Bs%7D)
The four strokes in order are the intake stroke, the compression stroke, the power stroke, and the exhaust stroke. Fuel is ignited during the power stroke.
Answer:
4.47 km
Explanation:
If we draw the path of the van then we get a shape with two exposed points A and D. If we draw a line from point D perpendicular to BA we get point E. This gives us a right angled triangle ADE.
From Pythagoras theorem
AD² = AE² + ED²
![AD=\sqrt{AE^2+ED^2}\\\Rightarrow AD=\sqrt{2^2+4^2}\\\Rightarrow AD=\sqrt{20}\\\Rightarrow AD=4.47\ km](https://tex.z-dn.net/?f=AD%3D%5Csqrt%7BAE%5E2%2BED%5E2%7D%5C%5C%5CRightarrow%20AD%3D%5Csqrt%7B2%5E2%2B4%5E2%7D%5C%5C%5CRightarrow%20AD%3D%5Csqrt%7B20%7D%5C%5C%5CRightarrow%20AD%3D4.47%5C%20km)
Hence, the van is 4.47 km from its initial point