Answer:
1m= 100cm
?= 2cm let ? be (n)
cross multiply
100n = 2
n= 2÷100
n= 0.02m
therefore 2cm is equal to 0.02 m
Answer:
a) d = 7.62 10⁻⁶ m, b) l = 3.25 10⁴ m
Explanation:
Resistance is expressed by the formula
R = ρ l / A (1)
density is defined by
density = m / V
the volume of a wire is the cross section by the length
V = A l
we substitute
density = m / A l
A = m / density l
we substitute in 1
R = ρ l density l / m
R =ρ density l² / m
l = √ (R m /ρ density)
let's calculate the cable length
l = √(11.7 13.5 10⁻³ / (1.68 10⁻⁸ 8.9 10³))
l = √(10.56 10⁸)
l = 3.25 10⁴ m
now we can find the cable diameter with the density equation
A = m / density l
A = 13.5 10⁻³ / (8.9 10³ 3.25 10⁴)
A = 4,557 10⁻¹¹ m²
the area of the circle is
A = π r² = π d² / 4
d = √ (4A /π)
d = √ (4 4,557 10⁻¹¹/π)
d = 7.62 10⁻⁶ m
Answer:
Therefore the resistance of the air makes the movement not parabolic but shorter in each direction
Explanation:
The projectile motion is described by the kinematics equations giving a parabolic trajectory, where on the x axis there is no acceleration and on the y axis the acceleration is the acceleration of gravity.
When the air resistance is taken into account it can be approximated as a force that opposes the movement that for low speeds is proportional to the speed of the space.
Consequently, the movement in the axis and the acceleration is less, in some cases it can be so small that the constant handle speed, in this case, is called terminal velocity.
On the x-axis the friction force creates an acceleration in the negative direction of the movement that the projectile has to brake.
Therefore the resistance of the air makes the movement not parabolic but shorter in each direction.