<span>30 hours
For this problem, going to assume that the actual flow rate for both pipes is constant for the entire duration of either filling or emptying the pool. The pipe to fill the pool I'll consider to have a value of 1/12 while the drain that empties the pool will have a value of 1/20. With those values, the equation that expresses how many hour it will take to fill the pool while the drain is open becomes:
X(1/12 - 1/20) = 1
Now solve for X
X(5/60 - 3/60) = 1
X(2/60) = 1
X(1/30) = 1
X/30 = 1
X = 30
To check the answer, let's see how much water would have been added over 30 hours.
30/12 = 2.5
So 2 and a half pools worth of water would have been added. Now how much would be removed?
30/20 = 1.5
And 1 and half pools worth would have been removed. So the amount left in the pool is
2.5 - 1.5 = 1
And that's exactly the amount needed.</span>
The question states that both parts of Noshi's desk were shaped like trapezoids and both had a height of 3.
We know that the formula for area of a trapezoid is (a+b)/2 * h, where a and b are bases of the trapezoid and h is the height. Note: This is like any other form of trying to find the area, because we are doing base times height, however, we need to divide the sum of the bases by 2 to find the average base length.
Let's call the first trapezoid on the left Trapezoid A and the second slanted trapezoid Trapezoid B.
Area of Trapezoid A = (a+b)/2 * h = (5+8)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
Area of Trapezoid B = (a+b)/2 * h = (4+9)/2 * 3 = 13/2 * 3 = 6.5 * 3 = 19.5 feet
To find the area of Noshi's total desk, we simply need to add the areas of Trapezoid A and Trapezoid B together.
19.5 feet + 19.5 feet = 39 feet
Therefore, the area of Noshi's desk is 39 feet.
Hope this helps! :)
Answer:
390625
Step-by-step explanation:
5x5x5x5x5x5x5x5
Answer:
1,650 candies
Step-by-step explanation:
rate: 110 candles per minute
time: 15 minutes
rate x time = work
110 x 15 = 1650
The correct answer to your question is 6, option B.
The degree of a polynomial is the highest exponent or power of the variable that is involved in the expression. In the above question we have only one variable which is x, and from the given terms we can see that the highest power of x is 6. So the degree of polynomial is 6. The degree of polynomials helps us to know about the end behavior of the graph.