the missing force is spring force.
The object is hanging from the spring and the spring is stretched by some distance from its equilibrium position. due to this stretch in the spring , a spring force starts acting on the object trying to regain its equilibrium position.
the spring force is given as
F = kx
where F = spring force ,k = spring constant , x = stretch in the spring.
the spring force balances the weight of the object in down direction and hence keeps the block from falling down.
Answer:
ride to our expected destination
Answer:
Explanation:
Remark
In general, these 3rd class levers are very inefficient. Because the force distance is smaller than the load distance, you need to pull upward with more force that the weight of the load. So whatever the load is, the force is going to be much greater.
The distances are always measured to the pivot unless you are asked something specific otherwise.
Givens
F = ?
weight = 6N
Force Distance = F*d = 0.5 m
Weight Distance =W*d1 = 2 m
Formula
F*Fd = W*Wd
Solution
F*0.5 = 6 * 2 Divide by 0.5
F = 12/0.5
F = 24 N upwards
Answer:

Explanation:
As we know that loop is placed in YZ plane and magnetic field is along x direction
So here net force on the side of the loop which lies along Y axis is given as

here we know that on Y axis z = 0
so B = 0
so we have

now on the opposite side we have z = a
so magnetic field is given as

so force on that side is given as



so net force on the loop is given as


That should be the Grasslands ?