Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:

Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=

Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=
Now, the relation between energies ratio and masses is:



60 N because 98N=mg (here g= 9.8 on earth) thus mass can be calculated which is 98/9.8 = 10kg
Now,new weight with g = 6m/s^2
=m×g' (here g' is new acceleration of the new planet)
= 10×6=60N
Comparing to current technology, here are some component of star wars that is possible :
- The drones
Remember the flying drones that could shoot stuff in star wars ? we already made that
- Prosthetic limb
Luke's bionic hand in star wars ? we also already made that
- The probe droids
We used a similar thing when our scientist done an expedition to the moon