Answer:
The temperature coefficient of resistivity for a linear thermistor is 
Explanation:
Given that,
Initial temperature = 0.00°C
Resistance = 75.0 Ω
Final temperature = 525°C
Resistance = 275 Ω
We need to calculate the temperature coefficient of resistivity for a linear thermistor
Using formula for a linear thermistor



Put the value into the formula


Hence, The temperature coefficient of resistivity for a linear thermistor is 
Answer:
17.6 m/s²
Explanation:
Given:
= 90 m/s (final velocity)
= 2 m/s (initial velocity)
Δt = 5s (change in time)
The formula for acceleration is:
= Δv / Δt
We can find Δv by doing
Δv =
- 
Replace the values
Δv = 90m/s - 2m/s
Δv= 88m/s
Using the equation from earlier, we can find the acceleration by dividing the average velocity by time.
= Δv / Δt
= 
acceleration = 17.6 
Who was the proponent of the Neo-classicism?
a) Claude Debussy
b) Joseph Maurice Ravel
c) Igor Stravinsky
d) Arnold Schoenberg
It is Tension as the other 3 answer choices would not make sense. Compression would mean you are pressing the rock on both sides or in this case, pushing it into the dirt. It can't be nuclear force as you are pulling out a rock. Air resistance would not make sense either as there is no air involved in the scenario at all.
the answer is true because evaporates can provide an ideal speed racing surface