its because it allows modern astronomers the ability to see farther out and more accuratly
I believe you're talking about displacement. It's a directional vector that depicts the movement of a point between two instances.
Answer:
An estimate for the time it will take for a spacecraft to travel from Earth to Mars is approximately 138.8 days
Explanation:
The distance between Earth and the Moon = 684,400 km
The distance between Earth and Mars = 220.58 × 10⁶ km
The distance between Earth and Pluto = 5.2241 × 10⁹ km
The ratio of the distance between Earth and Pluto and the distance between Earth and Mars = (5.2241 × 10⁹ km)/(220.58 × 10⁶ km) ≈ 23.683
It took 2006 to 2015 (9 years) to travel from Earth to Pluto, therefore, it can take approximately (9 years)/(23.683) ≈ 0.38 of a year which is ((9 years)/(23.683)) × 365.2422 ≈ 138.8 days for a spacecraft to travel from Earth to Mars
Two half lives so it is 4000 years old
Answer:
1.25 m
Explanation:
From the question given above, the following data were obtained:
Force ratio = 2.5
Distance of load from the fulcrum = 0.5 m
Distance of effort =.?
The distance of the effort from the fulcrum can be obtained as illustrated below:
Force ratio = Distance of effort / Distance of load
2.5 = Distance of effort / 0.5
Cross multiply
Distance of effort = 2.5 × 0.5
Distance of effort = 1.25 m
Therefore, the distance of the effort from the fulcrum is 1.25 m