The question to the above information is;
What is the best use of an atomic model to explain the charge of the particles in Thomson's beams?
Answer;
An atom's smaller negative particles are at a distance from the central positive particles, so the negative particles are easier to remove.
Explanation;
-Atoms are comprised of a nucleus consisting of protons (red) and neutrons (blue). The number of orbiting electrons is the same as the number of protons and is termed the "atomic number" of the element.
J.J. Thomson discovered the electron. Atoms are neutral overall, therefore in Thomson’s ‘plum pudding model’:
- atoms are spheres of positive charge
- electrons are dotted around inside
Answer:

Explanation:
As we know that the acceleration due to gravity decreases with height.
At certain height it will get to the half of its value on the surface of the earth.
As we know that the weight on the surface of the earth is given as:

where:
m = mass of the object
g = acceleration due to gravity of the substance
Since mass of the substance is constant so the variation is weight is possible only due to change in the acceleration due to gravity.
<u>We know that the variation of the acceleration due gravity with height is given as:</u>

where:
value to acceleration due to gravity at height h
g = acceleration due to gravity at the earth's surface
h = height of the object
R = radius of the earth = 
according to question the weight becomes half, so,:

is the height a rocket has to go above Earth's surface before its weight is half of what it is on Earth.
Answer:
a)0.5564c
b)43.6 m
Explanation:
Given proper length of falcrum L₀= 43.6 m
improper length L=30.1 m (when viewed from moving frame)
we know that 

⇒
=



v=0.5564c
this is the required speed of falcon when it passes luke
b). Since Han solo is on the Falcon its reference frame will be falcon itself hence there wont be any change in the length of Falcon that its length will be
43.6 m
Answer:
vf = 3.27[m/s]
Explanation:
In order to solve this problem we must analyze each body individually and find the respective equations. The free body diagram of each body (box and bucket) should be made, in the attached image we can see the free body diagrams and the respective equations.
With the first free body diagram, we determine that the tension T should be equal to the product of the mass of the box by the acceleration of this.
With the second free body diagram we determine another equation that relates the tension to the acceleration of the bucket and the mass of the bucket.
Then we equalize the two stress equations and we can clear the acceleration.
a = 3.58 [m/s^2]
As we know that the bucket descends 1.5 [m], this same distance is traveled by the box, as they are connected by the same rope.
![x = \frac{1}{2} *a*t^{2}\\1.5 = \frac{1}{2}*(3.58) *t^{2} \\t = 0.91 [s]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Aa%2At%5E%7B2%7D%5C%5C1.5%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%283.58%29%20%2At%5E%7B2%7D%20%5C%5Ct%20%3D%200.91%20%5Bs%5D)
And the speed can be calculated as follows:
![v_{f}=v_{o}+a*t\\v_{f}=0+(3.58*0.915)\\v_{f}= 3.27[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D%2Ba%2At%5C%5Cv_%7Bf%7D%3D0%2B%283.58%2A0.915%29%5C%5Cv_%7Bf%7D%3D%203.27%5Bm%2Fs%5D)
C. Radiation Hope this helps and You're welcome. :3