Answer:
1. -8.20 m/s²
2. 73.4 m
3. 19.4 m
Explanation:
1. Apply Newton's second law to the car in the y direction.
∑F = ma
N − mg = 0
N = mg
Apply Newton's second law to the car in the x direction.
∑F = ma
-F = ma
-Nμ = ma
-mgμ = ma
a = -gμ
Given μ = 0.837:
a = -(9.8 m/s²) (0.837)
a = -8.20 m/s²
2. Given:
v₀ = 34.7 m/s
v = 0 m/s
a = -8.20 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx
Δx = 73.4 m
3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.
d = v₀t
d = (34.7 m/s) (0.56 s)
d = 19.4 m
1) D: enormous
2) D: gravity
9.1 basic since > 7
1.2 VERY acidic << 7
<span>5.7 acidic < 7
</span>
Answer:
The number is 
Explanation:
From the question we are told that
The wavelength is 
The length of the glass plates is 
The distance between the plates (radius of wire ) = 
Generally the condition for constructive interference in a film is mathematically represented as
![2 * t = [m + \frac{1}{2} ]\lambda](https://tex.z-dn.net/?f=2%20%2A%20%20t%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%5Clambda)
Where t is the thickness of the separation between the glass i.e
t = 0 at the edge where the glasses are touching each other and
t = 2d at the edge where the glasses are separated by the wire
m is the order of the fringe it starts from 0, 1 , 2 ...
So
![2 * 2 * d = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20d%20%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=> ![2 * 2 * (2.8 *10^{-5}) = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20%20%20%282.8%20%2A10%5E%7B-5%7D%29%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=>

given that we start counting m from zero
it means that the number of bright fringes that would appear is

=> 
=> 