After rolling off the edge of the cliff and falling ' M ' meters down,
the speed of the boulder is
Square root of ( 19.6 M ) .
If M=111 meters, then the speed is <em>46.64 meters per second</em>.
We have known for roughly 500 years that if there's no air resistance,
the mass of the falling object makes no difference, and all objects fall
with the same acceleration, speed, time to splat, etc.
Answer:
f=171.43Hz
Explanation:
Wave frequency is the number of waves that pass a fixed point in a given amount of time.
The frequency formula is: f=v÷λ, where <em>v</em> is the velocity and <em>λ</em> is the wavelength.
Then replacing with the data of the problem,
f=
f=171.43
f=171.43 Hz (because
, 1 hertz equals 1 wave passing a fixed point in 1 second).
“Asexual reproduction is a type of reproduction by which offspring arise from a single organism, and inherit the genes of that parent only; it does not involve the fusion of gametes, and almost never changes the number of chromosomes.” -Wikipedia
Answer:
Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.
Explanation:
Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.
The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.
By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.
A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.
Broadening of the spectral lines will determine the star's rotation.