Answer: The rate constant at 296 K is 
Explanation:
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at 266 K = 
= rate constant at 296 K = ?
= activation energy for the reaction = 103 kJ/mol = 103000 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 266 K
= final temperature = 296 K
Now put all the given values in this formula, we get
![\log (\frac{K_2}{1.35\times 10^{-5}})=\frac{103000}{2.303\times 8.314J/mole.K}[\frac{1}{266}-\frac{1}{296}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B1.35%5Ctimes%2010%5E%7B-5%7D%7D%29%3D%5Cfrac%7B103000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B266%7D-%5Cfrac%7B1%7D%7B296%7D%5D)


Thus the rate constant at 296 K is 