Answer:
A carboxylate salt and water
Explanation:
A carboxylic acid is an organic compound that has general formula RCOOH, where R is a carbon chain. Because it's an acid, the neutralization will happen when it reacts with a base, such as NaOH.
When this reaction occurs, the base will dissociate in Na⁺ and OH⁻, and the acid will ionize in RCOO⁻ and H⁺, so the products will be RCOO⁻Na⁺ (a carboxylate salt) and H₂O (water).
Answer : The activation energy of the reaction is, 
Solution :
The relation between the rate constant the activation energy is,
![\log \frac{K_2}{K_1}=\frac{Ea}{2.303\times R}\times [\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%5Cfrac%7BK_2%7D%7BK_1%7D%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial rate constant = 
= final rate constant = 
= initial temperature = 
= final temperature = 
R = gas constant = 8.314 kJ/moleK
Ea = activation energy
Now put all the given values in the above formula, we get the activation energy.
![\log \frac{8.75\times 10^{-3}L/mole\text{ s}}{4.55\times 10^{-5}L/mole\text{ s}}=\frac{Ea}{2.303\times (8.314kJ/moleK)}\times [\frac{1}{468K}-\frac{1}{531K}]](https://tex.z-dn.net/?f=%5Clog%20%5Cfrac%7B8.75%5Ctimes%2010%5E%7B-3%7DL%2Fmole%5Ctext%7B%20s%7D%7D%7B4.55%5Ctimes%2010%5E%7B-5%7DL%2Fmole%5Ctext%7B%20s%7D%7D%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20%288.314kJ%2FmoleK%29%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7B468K%7D-%5Cfrac%7B1%7D%7B531K%7D%5D)

Therefore, the activation energy of the reaction is, 
Addition of water to an alkyne gives a keto‑enol tautomer product and that is the product changed into 2-pentanone, then the alkyne need to had been 1-pentyne. 2-pentyne might have given a combination of 2- and 3-pentanone.
<h3>
What is the keto-enol means in tautomer?</h3>
They carries a carbonyl bond even as enol implies the presence of a double bond and a hydroxyl group. The keto-enol tautomerization equilibrium is depending on stabilization elements of each the keto tautomer and the enol tautomer.
- The enol that could provide 2-pentanone might had been pent-1- en - 2 -ol. Because an equilibrium favors the ketone so greatly, equilibrium isn't an excellent description.
- If the ketone have been handled with bromine, little response might be visible because the enol content material might be too low.
- If a catalyst have been delivered, NaOH for example, then formation of the enolate of pent-1-en - 2 - ol might shape and react with bromine.
- This might finally provide a bromoform product. Under acidic conditions, the enol might desire formation of the greater substituted enol constant with alkene stability.
Answer:
Nitrogen, Hydrogen, Oxygen, Chlorine, and Fluorine are all gases at room temperature.
Explanation: