The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753
Answer:
it is made up of rays of varying frequencies
Answer: C
Explanation: They both contain membrane-bound organelles such as the nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and peroxisomes.
Answer:
(1) atomic numbers
Explanation:
The observed regularities in the properties of the elements on the periodic table are periodic functions of their atomic numbers.
- Atomic number is the number of protons in an atom.
- The periodic law states that "the properties of elements are a periodic function of their atomic number".
- Elements on the periodic table are arranged based on the atomic numbers they contain.
- The number of positively charged particles in an atom is the atomic number.
3 mol H₂ → 2 mol NH₃
5 mol H₂ → x mol NH₃
x=2*5.0/3=3.3
n(NH₃)=3.3 mol