Answer:
1. H₂SO₄ + Na₂CO₃ ⇒ Na₂SO₄ + H₂O + CO₂
sulfuric acid + sodium carbonate ⇒ sodium sulfate + water + carbon dioxide
2. 2 HCl + Mg(HCO₃)₂ ⇒ MgCl₂ + 2 H₂O + 2 CO₂
hydrochloric acid + magnesium hydrogencarbonate ⇒ magnesium chloride + water + carbon dioxide
Explanation:
1. Sulfuric acid is H₂SO₄. Sodium carbonate is Na₂CO₃.
H₂SO₄ + Na₂CO₃ ⇒ Na₂SO₄ + H₂O + CO₂
sulfuric acid + sodium carbonate ⇒ sodium sulfate + water + carbon dioxide
2. Hydrochloric acid is HCl. Magnesium hydrogencarbonate is Mg(HCO₃)₂.
2 HCl + Mg(HCO₃)₂ ⇒ MgCl₂ + 2 H₂O + 2 CO₂
hydrochloric acid + magnesium hydrogencarbonate ⇒ magnesium chloride + water + carbon dioxide
True.
SF are used for simplifying figures in a measurement to produce a more accurate reading.
Answer:
The structure with the ring flipped is the most stable
Explanation:
We have the trans 1,2 - dimethylcyclohexane. With the wedge/dash structure we could not figure is this form is stable (If we do a comparison with the cis structure). But when we do a chair structure and ring flipped structure, this is easier to look.
The picture attached shows the structures, they are labeled as 1, 2 and 3, according to this problem.
In the chair structure, according to the picture below, you can see that both methyls are heading in the axial positions of the ring (One facing upward and the other downward). This is pretty stable, however, when the methyls are in those positions, the methyl position 1, can undergoes an 1,3 diaxial interactions with the hydrogens atoms (They are not drawn, but still are there), so this interaction makes this structure a little less stable that it can be.
On the other side, the ring flipped structure, we can see that both methyls are in the equatorials positions of the ring, and in these positions, it can avoid the 1,4 diaxial interactions with the hydrogens atoms, making this structure the most stable structure.
Hope this helps
SiO2 is the only possible choice because the other formulas contain metals. how do we know this? because the other formulas contain elements located on the left of the “staircase” on the periodic table that separates metals from non-metals.