Answer:
Most radio waves have wavelengths between 1 mm and 100 km.
A cooling curve shows A. how the temperature of a substance falls as heat is removed.
Explanation:
<em>Radio waves</em> are the longest of all the waves in the electromagnetic spectrum.
Most have wavelengths between 1 mm and 100 km, although there is no upper limit.
Some radio waves have wavelengths of 10 000 km.
A <em>cooling curve</em> (see image below) shows how the temperature of a substance falls as it is cooled.
In Option E., a decrease in temperature would cause an energy <em>loss</em>.
Options B., C., and D. involve the <em>addition of heat</em>.
The combinations of Strontium and chlorine that are possible are only those in which strontium and chlorine combine in the ratio of 1:2.
1) The possible combinations are
- 4 strontium atoms and 8 chlorine
strontium atoms and
chlorine atoms
2) The combinations that are not possible are
- 20 strontium atoms and 60 chlorine atoms
- 130 billion strontium atoms and 195 billion chlorine
We have to work out the ratio of Strontium and chlorine in each of the given combinations in the question. Only the combinations in which the ratio of Strontium and chlorine is 1:2 is possible.
First case:
4 strontium atoms and 8 chlorine atoms gives a Strontium and chlorine ratio of 1:2 so it is possible.
Second case:
20 strontium atoms and 60 chlorine atoms gives a Strontium and chlorine ratio of 1:3 hence it is not possible.
Third case:
strontium atoms and
chlorine atoms gives a Strontium and chlorine ratio of 1:2 hence it is possible.
Fourth case:
130 billion strontium atoms and 195 billion chlorine atoms gives a Strontium and chlorine ratio of 1:1.5 hence it is not possible.
Learn more: brainly.com/question/9743981
The moving of molecules from areas of high concentration to that of low concentration to gain energy is best described as passive transport
<h3>What is passive transport?</h3>
Passive transport is a type of membrane transport in which chemicals are moved across cell membranes without using energy. Unlike active transport, which uses cellular energy, passive transport uses the second law of thermodynamics to cause the movement of substances across cell membranes.
<h3>Why is passive transport important?</h3>
Passive transport processes are critical to homeostasis. They maintain proper conditions inside the cell and the organism as a whole by letting chemicals to pass into and out of the cell.
To know more about Passive transport visit:
brainly.com/question/13542102
#SPJ4