Answer:
All chemical equations goes to the law of conservation of mass which says that matter can not be destroyed nor created which means there has to be an equal amount of atoms of each element on both sides of the equation. I hope that helps, I'm learning this as well.
Molarity after dilution : 0.0058 M
<h3>Further explanation
</h3>
The number of moles before and after dilution is the same
The dilution formula
M₁V₁=M₂V₂
M₁ = Molarity of the solution before dilution
V₁ = volume of the solution before dilution
M₂ = Molarity of the solution after dilution
V₂ = Molarity volume of the solution after dilution
M₁=0.1 M
V₁=6.11
V₂=105.12

Answer:
I think that is pretty good and if you get it wrong you showed your work so your teacher can see you're thinking. That is defenetly gonna get you a score.
Explanation:
the compounds in which phosphorous posses the highest possible oxidation have to mention here.
The species in which phosphorous have the highest oxidation state are: H₃PO₄, P₂O₅, PCl₅
The possible oxidation state of phosphorous is III and V. The highest oxidation state is V. There are several compounds in which phosphorous posses the +5 oxidation state. Like- Phosphoric acid (H₃PO₄), phosphorous pentoxide (P₂O₅), Phosphorous chloride (PCl₅) etc.
The oxidation state of an element depends upon the valence electron the valence shell of phosphorous is 3s² 3p³. Thus there are 5 electrons, as it has vacant 3d orbital thus it can easily form compound having +5 oxidation state.