*Answer:
Option A: 59.6
Explanation:
Step 1: Data given
Mass of aluminium = 4.00 kg
The applied emf = 5.00 V
watts = volts * amperes
Step 2: Calculate amperes
equivalent mass of aluminum = 27 / 3 = 9
mass of deposit = (equivalent mass x amperes x seconds) / 96500
4000 grams = (9* amperes * seconds) / 96500
amperes * seconds = 42888888.9
1 hour = 3600 seconds
amperes * hours = 42888888.9 / 3600 = 11913.6
amperes = 11913.6 / hours
Step 3: Calculate kilowatts
watts = 5 * 11913.6 / hours
watts = 59568 (per hour)
kilowatts = 59.6 (per hour)
The number of kilowatt-hours of electricity required to produce 4.00kg of aluminum from electrolysis of compounds from bauxite is 59.6 kWh when the applied emf is 5.00V
Answer:
HgO (empirical formula)
Explanation:
4.08 - 3.78 = 0.3g (oxygen)

0.02 : 0.02
0.02/0.02 : 0.02/0.02
1 : 1 (ratio)
HgO ( empirical formula)
2HgO ----> 2Hg + O2 ( your equation correct)
Answer:
0.17%
Explanation:
With the equation:
2Cr2O7 2- + C2H5OH + H2O --> 4Cr3+ + 2CO2 + 11H2O
We can assume that every mole of ethanol needs 2 moles of Dichromate to react.
So if in 1L we have 0.05961 moles of dichromate we can discover how many moles we have in 35.46mL
1000 mL - 0.05962 moles
35.46 mL - x
x = 
x = 2,11* 10^-3 moles
As we said earlier, 1 mole of ethanol needs 2 mole of dichromate, so in the solution we have 1,055*10^-3 moles of ethanol. We can discover the mass of ethanol present in the solution.
1 mole - 46g
1.055*10^-3 - y
y = 46 * 1.055*10^-3
y = 0.048 g
To discover the percent of alchol we can use a simple relation
28 g - 100%
0.048 - z
z = 
z = 0.17%
1 mountains
2 small volcanoes
3 I'm pretty sure its faults