Answer:
4.4 mol.
Explanation:
Hello!
In this case, since the formula for calculating the molarity is:

Whereas n stands for moles and V for the volume in liters; we can solve for n as shown below when we are given the volume and the molarity:

Thus, we plug in the given data to obtain:

Best regards!
<h3>
Answer:</h3>
128 g HCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Reaction Mole Ratios
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] Mg (s) + HCl (aq) → MgCl (aq) + H₂ (g)
↓
[RxN - Balanced] 2Mg (s) + 2HCl (aq) → 2MgCl (aq) + H₂ (g)
[Given] 3.25 mol Mg
[Solve] x g HCl
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg → 2 mol HCl
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of Cl - 35.45 g/mol
Molar Mass of HCl - 1.01 + 35.45 = 36.46 g/mol
<u>Step 3: Stoich</u>
- [S - DA] Set up:

- [S - DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
127.61 g HCl ≈ 128 g HCl
Answer:
So 1 mole
Explanation:
PV = nRT
P = Pressure atm
V = Volume L
n = Moles
R = 0.08206 L·atm·mol−1·K−1.
T = Temperature K
standard temperature = 273K
standard pressure = 1 atm
22.4 liters of oxygen
Ok so we have
V = 22.4
P = 1 atm
PV = nRT
n = PV/RT
n = 22.4/(0.08206 x 273)
n = 22.4/22.40
n = 1 mole
Answer:
the error could have been the fact that the unit for volume wasn't changed from cm³ to dm³
hence the calculation error
the solution to this would be first dividing the volume by 1000 to get that same amount in dm³ which is the standard unit to be used for volume-density calculations
The change in energy of the system : -63 J
<h3>Further explanation</h3>
Given
279 J work
216 J heat
Required
The change in energy
Solution
Laws of thermodynamics 1
ΔU=Q+W
Rules :
- receives heat, Q +
- releases heat, Q -
- work is done by a system, W -
- work is done on a system, W +
a gas work on the surrounding : W =-279 J
a gas absorb heat from surrounding : Q = +216 J
Internal energy :
= -279+216
= -63 J