Answer:
The 1st Blank is: A pure substance, or simply a substance
The 2nd blank on the left is: Elements
The 3rd blank on the right is: Compounds
The 4th blank which is the second middle one is: A mixture
The 5th blank which is the bottom left one is: Heterogeneous mixture
The 6th blank which is the last one on the bottom right is: Homogeneous mixture
Look at the step-by-step explanation if you get confused at the bottom.
Step-by-step explanation:
The 1st Blank: I would just put a pure substance.
The 2nd blank on the left: They are three characteristics of elements but just put elements.
The 3rd blank on the right: They are three characteristics of compounds but just put compounds.
The 4th blank which is the second middle one is: The characteristics of a mixture but just put a mixture.
The 5th blank which is the bottom left one: Are the characteristics of a heterogeneous mixture but just put heterogeneous mixture.
The 6th blank which is the last one on the bottom right: Are the characteristics of a homogeneous mixture but just put homogeneous mixture.
Answer:
120 different meals.
Step-by-step explanation:
Start with the entrees: There are 4
There are side dishes : 4
Drinks: 5
The side dishes can be 4!/(2!2!) (order does not matter here). There are 6 ways.
The entrees are 1 of 4: 4
And 5 drinks
P(dinner) = 5 * 4 * 6 = 120
Let x be the first number:
1st number: = x
2nd consecutive multiple of 6 = x+6
3rd consecutive multiple of 6 = x+12
4rth consecutive multiple of 6 = x+18
Their sum = 156 → x+(x+6)+(x+12)+(x+18) = 156
4x +30 = 156
4x = 120 and x = 30
The numbers are: 30,36,42,48
Answer:
=
−
7
3
=
−
7
Step-by-step explanation:
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>
</u>
<u>±
</u>
<u>
</u>
<u>2
</u>
<u>−
</u>
<u>4
</u>
<u>
</u>
<u>
</u>
<u>√
</u>
<u>2
</u>
<u>
</u>
<u>x={b}}^{2}-4{a}}{2{a}}}
</u>
<u>x=2a−b±b2−4ac
</u>
<u>Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
</u>
<u>3
</u>
<u>
</u>
<u>2
</u>
<u>+
</u>
<u>2
</u>
<u>8
</u>
<u>
</u>
<u>+
</u>
<u>4
</u>
<u>9
</u>
<u>=
</u>
<u>0
</u>
<u>3x^{2}+28x+49=0
</u>
<u>3x2+28x+49=0
</u>
<u>
</u>
<u>=
</u>
<u>3
</u>
<u>a={3}}
</u>
<u>a=3
</u>
<u>
</u>
<u>=
</u>
<u>2
</u>
<u>8
</u>
<u>b={28}}
</u>
<u>b=28
</u>
<u>
</u>
<u>=
</u>
<u>4
</u>
<u>9
</u>
<u>c={129}{49}}
</u>
<u>c=49
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>±
</u>
<u>2
</u>
<u>8
</u>
<u>2
</u>
<u>−
</u>
<u>4
</u>
<u>⋅
</u>
<u>3
</u>
<u>⋅
</u>
<u>4
</u>
<u>9
</u>
<u>√
</u>
<u>2
</u>
<u>⋅
</u>
<u>3
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>±
</u>
<u>1
</u>
<u>4 over
</u>
<u>6
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>+
</u>
<u>1
</u>
<u>4
</u>
<u>6
</u>
<u>x={-28+14}{6}
</u>
<u>x=6−28+14
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>2
</u>
<u>8
</u>
<u>−
</u>
<u>1
</u>
<u>4
</u>
<u>=
</u>
<u>−
</u>
<u>7
</u>
<u>3
</u>
<u>x=-{7}{3}
</u>
<u>x=−37
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>7
</u>
<u>=
</u>
<u>−
</u>
<u>7
</u>
<u>3
</u>
<u>
</u>
<u>=
</u>
<u>−
</u>
<u>7</u>