Answer:
1.42 L
Explanation:
Step 1:
The following data were obtained from the question :
Molarity of KBr = 2.40 M
Mole of KBr = 3.40 moles
Volume of solution =?
Step 2:
Determination of the volume of the solution.
Molarity of solution is simply the mole of the solute per unit volume the of solution. It is given as :
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 3.4/2.4
Volume = 1.42 L
Therefore, the volume of the solution is 1.42 L
We use the following formula to calculate the number of atoms:
n (mol) = N(number of atoms) / NA
N(He) = n(mol) · NA
N(He) = 2,0 moles · 6.02·1023 = 12.04·1023 atoms
Can we talk here?
I don’t have what you want to talk on
Answer:
The correct answer is 169.56 g/mol.
Explanation:
Based on the given information, the mass of Ag deposited is 1.24 g, and the mass of unknown metal X deposited in another cell is 0.650 g. The number of moles of electrons can be determined as,
= 1.24 g Ag * 1mol Ag/107.87 g/mol Ag * 1 mol electron/1 mol Ag ( the molecular mass of Ag is 107.87 g/mol)
= 0.0115 mole of electron
The half cell reaction for the metal X is,
X^3+ (aq) + 3e- = X (s)
From the reaction, it came out that 3 faraday will reduce one mole of X^3+.
The molar mass of X will be,
= 0.650 g/0.0115 *3 mol electron/1 mol
= 56.52 * 3
= 169.56 g/mol