<em>u={1,2,3,4,5},A={2,4} and Beta {2,5,5}</em>
<em>now</em><em>,</em><em> </em><em>(AUB)</em><em>=</em><em>{</em><em>1</em><em>,</em><em>3</em><em>,</em><em>3</em><em>,</em><em>4</em><em>,</em><em>5</em><em>}</em>
<em>[</em><em>AUB</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>set</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>elements</em><em> </em><em>of</em><em> </em><em>set</em><em> </em><em>A</em><em> </em><em>and</em><em> </em><em>set</em><em> </em><em>B</em><em> </em><em>without </em><em>any</em><em> </em><em>repetition </em><em>]</em>
<em>n</em><em>(</em><em>AUB</em><em>)</em><em>=</em><em>5</em>
<em>n</em><em>(</em><em>AUB</em><em>)</em><em>is</em><em> </em><em>the</em><em> </em><em>total</em><em> </em><em>no</em><em> </em><em>of</em><em> </em><em>elements</em><em> </em><em>in</em><em> </em><em>set</em><em> </em><em>(</em><em>AUB</em><em>)</em>
Answer:
40
Step-by-step explanation:
(2x+1/(2x))^5 *(2x -1/(2x))^5
= ((2x)^2 -1/(2x)^2)^5 (a+b)*(a-b) =a2-b2
= (4x^2-1/4(x)^2)^5
now
x =4x^2. ,a = 1/4(x)^2 ,n =5
we have
general term = Cr *x^r *a^(n-r)
= Cr * (4x^2)^r * (1/4(x)^2)^(n-r)
= Cr *4^r * X^2r * 1/( 4^(n-r) *x^(2n-2r)
= Cr * 4^r/4^(n-r) * x^(2r)/x^(2n-2r)
= Cr * 4(2r-n) *x(4r-2n)
now for x^2
4r-2n = 2
4r -10=2
4r =12
r = 3
now for coeff
C(5,3) * 4^(2*3-5)
5!/(3!*(5-3)!) * 4
5*4/(2*1)*4
40
It is:
40+1+0.3+0.02=41.32
Answer:
the answer is 25 in this question hope it helped
Answer: 13+16x
Step-by-step explanation:
Okay so I just learned how to do that haha, so if the answer is wrongdoing I'm a sorry.
I added the 8 and five, then multiplyed the 4 and the 4 then added the x on the end.