Answer:
Explanation:
so we have to solve it or just answer it?
Answer:

Explanation:
Hello there!
In this case, since the titration of acids like KHP with bases like NaOH are performed in a 1:1 mole ratio, it is possible for us to know that their moles are the same at the equivalence point, and the concentration, volume and moles are related as follows:

Thus, by solving for the volume of the base as NaOH, we obtain:

Best regards!
Answer:
Reaction I: Sodium + Aluminum chloride →Sodium chloride + Aluminum
Explanation:
Sodium being more reactive means that it will take the place of aluminium in whats called a displacement reaction and form.
Sodium chloride + Aluminum
Given the temperature 746 K and activity of Pb equal to 0.055. The mole fraction of Pb is 0.1. So, the mole fraction of Sn = 0.9.Activity coefficient, γ = 0.055 / 0.1 = 0.55.The expression for w=ln〖γ_Pb x RT〗/(X_Sn^2 )=(-0.5978 x 8.314 J/(mol K ) x 746 K)/(0.9 x 0.9)= -4577.7 J= -4578 J
Now we use the computed value above and new temperature 773 K. The mole fraction of Sn and Pb are 0.5 and 0.5 respectively. Calculate the activity coefficient in the following manner.lnγ_Sn=w/RT X_Pb^2=(-4578 J)/(8.314 J/mol x 773 K) x 0.5 x 0.5= -0.718lnγ_Sn=exp(-0.178)=0.386The activity of Sn= γ_Sn x X_Sn=0.386 x 0.5=0.418
w of the system is -4578 J and the activity of Sn in the liquid solution of xsn at 500 degree Celsius is 0.418
Answer:
True
Explanation:
<u>The first law of thermodynamics</u> establishes a relationship between the internal energy of the system and the energy that it exchanges with the environment in the form of heat or work.
The first law of thermodynamics determines that the internal energy of a system increases when heat is transferred or work is done on it.
Like all the principles of thermodynamics, the first principle is based on systems in equilibrium.
On the other hand, it is likely that you have heard more than once that energy is neither created nor destroyed, only transformed. It is the general principle of energy conservation. Well, the first law of thermodynamics is the application to thermal processes of this principle.
The universe as a whole could be considered an isolated system, and therefore its total energy remains constant.