Answer: In order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
Explanation:
More is the concentration of reactant molecules more will be the number of collisions between their molecules. As a result, more readily the products will be formed.
Hence, for the given reaction when concentration of HCl is increased then there will be increase in the number of collisions between reactants.
Thus, we can conclude that in order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
The correct answer is C. Colligative properties only depend upon the number of solute particles in a solution but not on the identity or nature of the solute and solvent particles. I hope this anwers your question.
Answer: Th enthalpy of combustion for the given reaction is 594.244 kJ/mol
Explanation: Enthalpy of combustion is defined as the decomposition of a substance in the presence of oxygen gas.
W are given a chemical reaction:



To calculate the enthalpy change, we use the formula:

This is the amount of energy released when 0.1326 grams of sample was burned.
So, energy released when 1 gram of sample was burned is = 
Energy 1 mole of magnesium is being combusted, so to calculate the energy released when 1 mole of magnesium ( that is 24 g/mol of magnesium) is being combusted will be:

Explanation:
It is given that volume is 0.50 L and molarity is 0.485 M. Hence, number of millimoles will be calculated as follows.
Number of millimoles = Molarity × Volume
As there are 1000 mL in 1 L. So, 0.50 L equals 500 mL.
Therefore, putting the given values into the above formula as follows.
Number of millimoles = Molarity × Volume
= 0.485 M × 500 mL
= 242.5
Thus, we can conclude that 242.5 millimoles of copper(II) sulfate has been added by the chemist to the flask.
Answer:
HCO3- (aq) + H2O (I) <--> H2CO3 (aq) + OH- (aq)
Explanation:
The equation to distinguish between cation and anion hydrolysis is given below :
HCO3- (aq) + H2O (I) <--> H2CO3 (aq) + OH- (aq)
The important thing to remember is their origin. The anions can react with water and can produce hydroxide ions while hydroxide ions make a solution basic.