Answer: hello question b is incomplete attached below is the missing question
a) attached below
b) V = 0.336 ft/s
Explanation:
Elongation ( Xo) = 16/ 7 feet
mass attached to 4-foot spring = 16 pounds
medium has 9/2 times instanteous velocity
<u>a) Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 2 ft/s</u>
The motion is an underdamped motion because the value of β < Wo
Wo = 3.741 s^-1
attached below is a detailed solution of the question
Answer:
New volume of the baloon is 0.02325m^3
Explanation:
To answer this question we need to know the ideal gas law, which says:
p•V = n•R•T
p is pressure, V is volume, n is amount of substance (in moles), R is constant value and T is temperature.
Since it's stated that n and T are constant, and we know that R is a constant too, that means that p•V = constant value. Basically, that means that p1•V1 (pressure and volume before the pressure increase) equals to p2•V2 (pressure and volume after the pressure increase).
That means that:
100000 Pa • 0.0279 m^3 = 120000 Pa • V2. Next, V2= 100000•0.0279/120000. So, V2=0.02325m^3.
We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to
Answer:
1. To determine the average speed for the first day of the trip, the total distance traveled would have to be acquired and then how long it took to arrive at the final destination, only including the time that was actually traveled and not any time that was accumulated by any rest stops. Once you have this information, you have to divide the distance over time and you have the average speed (mph).
2. To determine the instantaneous speed, you would just have to look at the speedometer, which tells you at what speed the car is traveling at that exact moment.
Explanation:
I took physics 121 and got the same question. This is my answer that i used and my teacher said it was right.