1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
3 years ago
15

MIDDLE SCHOOL SCIENCE yee yee please answer 6, 7, and 8

Physics
1 answer:
Nikolay [14]3 years ago
5 0

Answer:

what r the questions i can’t see them

Explanation:

You might be interested in
When attempting to determine the coefficient of kinetic friction, why is it necessary to move the block with constant velocity
Readme [11.4K]

Answer:

Explanation:

In order to measure the coefficient of friction , we apply external force to move the body . When external force comes in motion , we adjust the external force so that it moves with zero acceleration or uniform velocity . In this case external force becomes equal to kinetic frictional force and then net force becomes zero because

net force = mass x acceleration = m x 0 = 0

Now frictional force = μ mg where μ is coefficient of kinetic friction

so F = μ mg where F is external force applied

μ = F / mg

Hence , to make external force equal to frictional force , it is necessary to make acceleration of body zero .

4 0
3 years ago
Susan is making an electromagnet in her science class today. First, she takes a nail and winds coils of copper wire around it th
matrenka [14]

Answer:

Electrical

Explanation:

She uses a battery, which is electrical.

It doesn't operate using chemicals, heat, or light

5 0
4 years ago
Read 2 more answers
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
A block of mass, m, sits on the ground. A student pulls up on
kakasveta [241]

Answer a

Explanation: a

3 0
3 years ago
A 30° incline permanently sits on a 1.1 meter high table. Starting from rest a ball rolls off the incline with a velocity of 2m/
exis [7]
It would be a good game for you but if I get a pic I don’t want you can you come to my crib I just
3 0
3 years ago
Other questions:
  • An object on the surface of the earth has a force of gravity of 682 N. What is the objects mass?
    10·1 answer
  • What are the first and second object in a gravitational field
    11·1 answer
  • Force causes __________ dimensional objects to rotate
    6·1 answer
  • Distinguish between speed and velocity.
    14·2 answers
  • Two point charges, A and B, are separated by a distance of 19.0 cm . The magnitude of the charge on A is twice that of the charg
    7·1 answer
  • Two gliders collide on an air track. Glider 1 has a mass of 7.0 kg, and glider 2 has a mass of 4.0 kg. Before the collision, gli
    10·1 answer
  • Which of the following forms of energy must an object have if it is moving at a constant velocity?
    14·1 answer
  • You flip a coin straight up if the coin reaches a high point of 0.25 m above where you released it what was the initial speed?
    10·1 answer
  • Pls help meh Kdjdjeidjndiejdididjdjjdidjdjdiejd
    15·2 answers
  • Science question: How do humans use the magnetic field for navigation?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!