Complete question:
A solenoid of length 2.40 m and radius 1.70 cm carries a current of 0.190 A. Determine the magnitude of the magnetic field inside if the solenoid consists of 2100 turns of wire.
Answer:
The magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻⁴ T.
Explanation:
Given;
length of solenoid, L = 2.4 m
radius of solenoid, R = 1.7 cm = 0.017 m
current in the solenoid, I = 0.19 A
number of turns of the solenoid, N = 2100 turns
The magnitude of the magnetic field inside the solenoid is given by;
B = μnI
Where;
μ is permeability of free space = 4π x 10⁻⁷ m/A
n is number of turns per length = N/L
I is current in the solenoid
B = μnI = μ(N/L)I
B = 4π x 10⁻⁷(2100 / 2.4)0.19
B = 4π x 10⁻⁷ (875) 0.19
B = 2.089 x 10⁻⁴ T
Therefore, the magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻⁴ T.
D, small force for short time, as it has the least influence on the velocity.
C, momentum is velocity x mass, so if velocities are the same, then the object with less mass with have a lower momentum.
<h3><u>Answer;</u></h3>
= 4.19 Joules
<h3><u>Solution;</u></h3>
Energy stored in capacitor = U = 8.38 J
U =(1/2)CV^2
C =(eo)A/d
C*d=(eo)A=constant
C2d2=C1d1
C2=C1d1/d2
Initial separation between the plates =d1= 2.30mm .
Final separation = d2 = 1.15 mm
But; Energy=U =(1/2)q^2/C
U2C2 = U1C1
U2 =U1C1 /C2
U2 =U1d2/d1
Final energy = Uf = initial energy × d2/d1
= 8.38 ×1.15/2.30
= 4.19 Joules
Thus; The final energy = 4.19 Joules
Answer:
The direction of magnetic field produced by a current carrying wire is given by the right hand thumb rule. If the thumb points in the direction of current the fingers curl along the direction of magnetic field.
further, The red end of the compass needle points in the direction of external magnetic field. As the red end of the needle is pointing away from us, the external magnetic field at its location should also be directed away from us. Using the right hand thumb rule, we can see that this is only possible if the current in the wire is flowing upwards.
Explanation:
Sure
"Mount Everest is 29,000 feet tall" or in scientific terms 2.9E4
This statement/observation is accurate to 2 decimal places. It is precise only to (perhaps) the nearest thousand feet.
More precise
"Mount Everest is 29,029 feet tall"