Answer:
is a reflection.
The image is real light rays actually focus at the image location). As the object moves towards the mirror the image location moves further away from the mirror and the image size grows (but the image is still inverted). When the object is that the focal point, the image is at infinity.
Explanation:
The tension in the string when the ball is at the bottom of the path is 2.61 Newtons.
<h3>Tension</h3>
A tension is simply referred to as a force along the length of a flexible medium such as strings, cable, ropes etc.
Tension in a string revolving can be determined using the expression;
T = mv² / r
Where m is mass of object, v is velocity and r is radius ( length of string )
Given the data in the question;
- Radius ( length of string ) r = 97.7cm = 0.977m
- Tension in the string; T = ?
To determine tension in the string, we substitute our given values into the expression above.
T = mv² / r
T = (0.182kg × (3.74m/s)²) / 0.977m
T = (0.182kg × 13.9876m²/s²) / 0.977m
T = (2.5457432kgm²/s²) / 0.977m
T = 2.61kgm/s²
T = 2.61N
Therefore, the tension in the string when the ball is at the bottom of the path is 2.61 Newtons.
Learn more about Tension here: brainly.com/question/14351325
Answer:
Average speed = 0.35 m/s
Explanation:
Given the following data;
Distance = 1.3 Km
Time = 62 minutes
To find the average speed in m/s;
First of all, we would convert the quantities to their standard unit (S.I) of measurement;
Conversion:
1.3 kilometres to meters = 1.3 * 1000 = 1300 meters
For time;
1 minute = 60 seconds
62 minutes = X
Cross-multiplying, we have;
X = 62 * 60
X = 3720 seconds
Now, we can calculate the average speed in m/s using the formula;


Average speed = 0.35 m/s
Answer:
the speed of electron is 4.42 x 10⁶ m/s
the speed of proton is 2406.7 m/s
Explanation:
Given;
electric field strength, E = 478 N/C
charge of the particles, Q = 1.6 x 10⁻¹⁹ C
mass of proton, Mp = 1.673 x 10⁻²⁷ kg
mass of electron Me = 9.11 x 10⁻³¹ kg
time of motion, t = 54.2 ns = 54.2 x 10⁻⁹ s
The magnitude of charge experienced by the particles is calculated as;
F = EQ
F = 478 x 1.6 x 10⁻¹⁹
F = 7.648 x 10⁻¹⁷ N
The speed of the particles is calculated as;

