70-10/70 x 100 percentage change ....
60/70, 6/7 fract change
The electric field is always perpendicular to the surface outside of a conductor. TRUE
<span> If an electron were placed on an electric field line, it would move in a direction perpendicular to the field. FALSE, it would move in an anti-parallel direction because its charge is negative </span>
<span>Electric field lines originate on positive charge and terminate on negative charge. TRUE ; but they can also go to infinity </span>
It is possible for two electric field lines to cross each other.
<span> Usually FALSE; though technically possible at special points where field is zero. </span>
If an electron and a positron were in the presence of a very strong electric field, they would move away from each other.
<span> TRUE; one is positive, and one is negative. If the field is strong enough, the action of the field will overcome the mutual attraction between them </span>
It is not possible for the electric field to ever be zero. FALSE: it IS possible, inside a conductor for instance
If a proton were placed on an electric field line, it would move in a direction anti-parallel to the field.
<span> FALSE: being positive, it would move in the SAME direction as the field</span>ic
Answer:
The resonant frequency of this circuit is 1190.91 Hz.
Explanation:
Given that,
Inductance, 
Resistance, R = 150 ohms
Capacitance, 
At resonance, the capacitive reactance is equal to the inductive reactance such that,

f is the resonant frequency of this circuit



So, the resonant frequency of this circuit is 1190.91 Hz. Hence, this is the required solution.
Answer:
The resultant force on charge 3 is Fr= -2,11665 * 10^(-7)
Explanation:
Step 1: First place the three charges along a horizontal axis. The first positive charge will be at point x=0, the second negative charge at point x=10 and the third positive charge at point x=20. Everything is indicated in the attached graph.
Step 2: I must calculate the magnitude of the forces acting on the third charge.
F13: Force exerted by charge 1 on charge 3.
F23: Force exerted by charge 2 on charge 3.
K: Constant of Coulomb's law.
d13: distance from charge 1 to charge 3.
d23: distance from charge 2 to charge 3
Fr: Resulting force.
q1=+2.06 x 10-9 C
q2= -3.27 x 10-9 C
q3= +1.05 x 10-9 C
K=9-10^9 N-m^2/C^2
d13= 0,20 m
d23= 0,10 m
F13= K * (q1 * q3)/(d13)^2
F13=9,7335*10^(-8) N
F23=K * (q2 * q3)/(d23)^2
F23= -3,09 * 10^(-7)
Step 3: We calculate the resultant force on charge 3.
Fr=F13+F23= -2,11665 * 10^(-7)
Universe contains billions and billions of stars, galaxies, planets, asteroids, comets and many more different type of bodies. These objects emit radiations of varied frequency. In order to study these different kind of objects, different kind of technology is required. There are different type of missions: some contain probes which land on the surface, some orbit the bodies etc. These are for solar system. Yet some are space observatories having detectors to study light from distant objects. Further, there are different detectors for different wavelengths of electromagnetic spectrum.