Work = Force times distance
from your "answers" the one that bests fits this equation is weight since this is a type of force
<h3><u>Answer;</u></h3>
a) 5.00 x 10^8 J
<h3><u>Explanation;</u></h3>
The work done to move the sailboat is calculated through the equation;
W = F x d
where F is force and d is the distance.
Substituting the known values from the given above,
W = (5.00 x 10⁴ N)(10 km)(1000 m/ 1km)
= 5.00 x 10⁸ J
Thus, the work done is <u>5.00 x 10⁸Joules</u>
Answer:
a. True
Explanation:
Illumination distance is the distance, up to which the light of the vehicle can reach. Hence, it is a maximum distance from the, that driver can see.
Stopping distance is the minimum distance required by the car to stop after brakes are applied.
So, in order to avoid any accident the illumination distance must be greater than the stopping distance. So, the driver can stop the vehicle in time, when he sees something in front of it.
Since, the stopping distance in this case is two or three times longer than illumination distance. Therefore, low beam light does not provide enough visibility in high speed driving situations.
Hence, the correct option is:
<u>a. True</u>
<u></u>
Answer:
0 m/s
Explanation:
velocity= change in displacement/ time
at rest, the ball does not travel any distance
0/ t
=0
Answer:
The maximum safe speed of the car is 30.82 m/s.
Explanation:
It is given that,
The formula that models the maximum safe speed, v, in miles per hour, at which a car can travel on a curved road with radius of curvature r r, is in feet is given by :
.........(1)
A highway crew measures the radius of curvature at an exit ramp on a highway as 380 feet, r = 380 feet
Put the value of r in equation (1) as :

v = 30.82 m/s
So, the maximum safe speed of the car is 30.82 m/s. Hence, this is the required solution.