Answer and Step-by-step explanation:
(a) Given that x and y is even, we want to prove that xy is also even.
For x and y to be even, x and y have to be a multiple of 2. Let x = 2k and y = 2p where k and p are real numbers. xy = 2k x 2p = 4kp = 2(2kp). The product is a multiple of 2, this means the number is also even. Hence xy is even when x and y are even.
(b) in reality, if an odd number multiplies and odd number, the result is also an odd number. Therefore, the question is wrong. I assume they wanted to ask for the proof that the product is also odd. If that's the case, then this is the proof:
Given that x and y are odd, we want to prove that xy is odd. For x and y to be odd, they have to be multiples of 2 with 1 added to it. Therefore, suppose x = 2k + 1 and y = 2p + 1 then xy = (2k + 1)(2p + 1) = 4kp + 2k + 2p + 1 = 2(kp + k + p) + 1. Let kp + k + p = q, then we have 2q + 1 which is also odd.
(c) Given that x is odd we want to prove that 3x is also odd. Firstly, we've proven above that xy is odd if x and y are odd. 3 is an odd number and we are told that x is odd. Therefore it follows from the second proof that 3x is also odd.
4x^2 + x + 3 = 0
x = [-1 +/- sqrt (1^2 - 4 * 4 * 3)] / 8 = - 1 +/- sqrt ( --47) / 8
= ( - 1 +/- sqrt47i) / 8 = -0.125 + 0.857i , -0.125 - 0.857i
The answer is g^-1= x^2/2 + 1/2
Answer:
1
Step-by-step explanation:
:)
False. It has a slope of 5/6 and y intercept of 1/2.