1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yakvenalex [24]
3 years ago
9

What is the area of this triangle 12 m 13 m and 5 m is the measurements of the triangle

Mathematics
1 answer:
VashaNatasha [74]3 years ago
7 0

Answer:

30 m^2.

Step-by-step explanation:

This  is a right-angled triangle because it obeys the Pythagoras theorem

( 13^2 = 12^2 + 5^2).

So its area = 1/2 * base * height

= 1/2 * 5 * 12

= 30 m^2

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
What is the prime factorozation of 760 in expended form
harina [27]
 The Prime Factorization of 760 is 19·5·2·2·2
Because those are the prime number factors of 760
8 0
2 years ago
Which is the translation of the expression below?
NNADVOKAT [17]
In English, the translation of those symbols is ...

Zero multiplied or divided by anything is zero.
4 0
3 years ago
In the figure, solve for x and y.
evablogger [386]

Answer:

y=124°

x=67°

Step-by-step explanation:

For the triangle on the right

180-74-50=56°

then y= 180-56=124°

For the triangle on the middle (that small triangle)

180-85(Head opposite angles)-50=45°

So

x=180-45-68=67°

5 0
3 years ago
A circle has a circumference of 615.44 point, 44 units.<br> What is the radius of the circle?
Tpy6a [65]

The circumference of a circle is equal to C=2πr

From the question, we have 615.44.

Assume that pi is equal to 3.14

Substitute and solve for r

615.44= 2(3.14)r

r= 615.44/ 6.28

r=98.4704

r=98

Therefore, the radius is about 98 units.

To check:

C=2πr

C=2 x 3.14 x 98

C=6.28 x98

C=615.44

5 0
2 years ago
Other questions:
  • Integral of sec (3x) tan (3x) dx
    7·1 answer
  • Select the correct answer.
    14·1 answer
  • A person goes to the doctor and needs a 3-month prescription of medicine. The person is required to take 3 pills per day. How ma
    14·1 answer
  • Convert 0.74 kcal/min to cal/sec. Show a step-by-step solution.
    12·1 answer
  • Como puedo aser este numero en forma expandida 373,698​
    6·1 answer
  • SOMEONE HELP ASAP i’ll give brainliest
    7·1 answer
  • Find The Domain Of This Function<br><br> <img src="https://tex.z-dn.net/?f=%5C%5Bh%28x%29%20%3D%20%5Cfrac%7B3x%20-%201%7D%7B%5Cs
    14·1 answer
  • Please help me.
    7·1 answer
  • 2)
    14·2 answers
  • Dulce's father wants to start saving for her quinceanera. If he sets aside $150.00 each month, how much will he have saved in th
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!