X = 4 , y = -1
Explanation:
solve by elimination ie eliminate x or y from the equations by performing operations on them.
first label the equations , to follow the process.
x - y = 5 ----------------(1)
x+ y = 3 ----------------(2)
If (1) and (2) are added then y will be eliminated.
(1) + (2) gives : 2x = 8 → x = 4
now substitute this value of x into either of the 2 equations and solve for y.
let x = 4 in (1) : 4 - y = 5 → -y = 1 → y = -1
check in (1) : 4-(-1) = 4+1 = 5
check in(2) : 4 - 1 = 3
Since g(h(x))=h(g(x))= x, hence functions h and g are inverses of each other
Given the functions expressed as:

In order to check whether they are inverses of each other, we need to show that h(g(x)) = g(h(x))
Get the composite function h(g(x))

Get the composite function g(h(x))

Since g(h(x))=h(g(x))= x, hence functions h and g are inverses of each other
Learn more on inverse functions here; brainly.com/question/14391067
B is your awnser! sorry if im wrong my calc shows its without a - symbol