To communicate the results in an organized report
Answer:
option C is correct = 1.14 × 10²² molecules of CO₂
Explanation:
Given data:
Number of moles of CO₂ = 0.0189 mol
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
For given question:
1 mole of CO₂ = 6.022 × 10²³ molecules of CO₂
0.0189 mol of CO₂ × 6.022 × 10²³ molecules of CO₂ / 1mol
1.14 × 10²² molecules of CO₂
Thus, option C is correct.
The answer is a. one. There are three phosphate bonds in the ATP but only the first bond is responsible for the high energy. When this bond break, ATP will change to ADP.
Aromatic compound has continuous cyclic structure with( 4n+2)π electrons (Huckels rule), where n = 0,1,2…
Here number of pi electron are 6, where 4 from two double bond and 2 from nitrogen non-bonding electrons, hence it has total 6 pi electrons, therefore
6= ( 4n+2)π
4 = 4n
n =1
Hence it is an aromatic compound
Answer: 1 mole of H2O= about 1/3 of a cup (18 mL). It is helpful ... 6.02 x 1023 H2O molecules. = 6.02 x 1023 NaCl formula unit. 1 mole C. 1 mole H2O. 1 mole
Explanation: