Answer: 10.2 grams
Explanation:
The balanced chemical reaction is :

According to the ideal gas equation:

P = Pressure of the gas = 740 torr = 0.97 atm (760torr=1atm)
V= Volume of the gas = 12.0 L
T= Temperature of the gas = 19°C = 292 K 
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas


According to stoichiometry:
2 moles of hydrogen are generated by = 1 mole of 
Thus 0.48 moles of hydrogen are generated by =
moles of 
Mass of 
Thus 10.2 grams of
are needed to generate 12.0 L of hydrogen gas if the pressure of hydrogen is 740. torr at 19°C
that seems very false but I believe its the second one
Answer:
17.934 kg of water
Explanation:
If balanced equation is not given; this format can come in handy.
For any alkane of the type : CₙH₂ₙ₊₂ , it's combustion reaction will follow:
2CₙH₂ₙ₊₂ + (3n+1) O₂ → (2n)CO₂ + 2(n+1) H₂O
For butane:
2C₄H₁₀(g) + 13O₂(g) → 8CO₂(g) + 10H₂O(l)
2 moles of butane gives 10 moles of water.
1 mol of any substance has Avogadro number(N) of molecules in it( 6.022 x 10²³)
Mass of 1 mole of any substance is equal to it's molar mass
So, if 2 x N molecules of butane gives 10 x 18 g of water.
Then 1.2 x 10²⁶ molecules will give:

= 17.934 x 10³ g of water
= 17.934 kg of water
3.8 Meters converts to 380 Centimeters.
Answer: 0.0220275 M
Explanation:
So, we are given the following data or parameters which are going to help in solving this particular Question/problem.
=> Averagely, we have the volume = 5.0 L of blood in human body .
=> Mass of sugar eaten = 37.7 g of sugar (sucrose, 342.30 g/mol).
Therefore, the molarity of the blood sugar change can be calculated as below:
The molarity of the blood sugar change = (1/ volume) × mass/molar mass.
Thus, the molarity of the blood sugar change = (1/5) × 37.7/342.30 = 0.0220275 M.