The solubility of solid substances generally increase as temperature increases. The solubility of gaseous substances generally decrease as temperature increases.
Answer:
Chloroform is expected to boil at 333 K (60
).
Explanation:
For liquid-vapor equilibrium at 1 atm,
= 0.
We know,
, where T is temperature in kelvin scale.
Here both
and
are corresponding to vaporization process therefore T represents boiling point of chloroform.
So, ![0=(31.4\times 10^{3}\frac{J}{mol})-[T\times (94.2\frac{J}{mol.K})]](https://tex.z-dn.net/?f=0%3D%2831.4%5Ctimes%2010%5E%7B3%7D%5Cfrac%7BJ%7D%7Bmol%7D%29-%5BT%5Ctimes%20%2894.2%5Cfrac%7BJ%7D%7Bmol.K%7D%29%5D)
or, T = 333 K
So, at 333 K (60
) , chloroform is expected to boil.
Answer:
310.53 g of Cu.
Explanation:
The balanced equation for the reaction is given below:
CuSO₄ + Zn —> ZnSO₄ + Cu
Next, we shall determine the mass of CuSO₄ that reacted and the mass Cu produced from the balanced equation. This can be obtained as follow:
Molar mass of CuSO₄ = 63.5 + 32 + (16×4)
= 63.5 + 32 + 64
= 159.5 g/mol
Mass of CuSO₄ from the balanced equation = 1 × 159.5 = 159.5 g
Molar mass of Cu = 63.5 g/mol
Mass of Cu from the balanced equation = 1 × 63.5 = 63.5 g
Summary:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Finally, we shall determine the mass of Cu produced by the reaction of 780 g of CuSO₄. This can be obtained as follow:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Therefore, 780 g of CuSO₄ will react to produce = (780 × 63.5)/159.5 = 310.53 g of Cu.
Thus, 310.53 g of Cu were obtained from the reaction.
C is the answer !!!!!!!!!!!!!
Explanation:
Na2CO3+2AgNO3------>Ag2CO3+2NaNO3