Answer: a) 
b) 1 mole of
is produced.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The skeletal equation is:

The balanced equation will be:

Thus the coefficients are 2, 3 , 10 , 4 , 3 , 2 and 5.
b) Oxidation: 
Reduction: 
Net reaction: 
When 1 mole of
is produced, 1 mole of
is produced.
A balanced equation must have the same number of atoms on the both sides of equation.
The image provided shows the diene that is used for this question. We are told that the major product of the reaction is the 1,4-addition product. The result is the addition of a bromine atom to the first carbon and the fourth carbon of the diene. However, Br₂ can also add to just one alkene of the diene in a 1,2-addition to get the other product shown in the image.
As the first bromine atom adds to one of the alkenes, it adds to the first carbon which leads to the formation of a carbocation. The carbocation can be a stable tertiary center at the 2 carbon of the diene, or the less stable secondary center of the 4 carbon. To addition to the 4-carbon has a higher activation barrier which, but the product has a lower energy than the 1,2-product. Therefore, the 1,4-addition is the thermodynamic product and will form at higher temperatures. The 1,2-product is the kinetic product that will form at lower temperatures.
Answer:
this reaction is so the answer should be A
C. the soda will squirt out because of increased agitation.