When the object is at rest, there is a zero net force due the cancellation of the object's weight <em>w</em> with the normal force <em>n</em> of the table pushing up on the object, so that by Newton's second law,
∑ <em>F</em> = <em>n</em> - <em>w</em> = 0 → <em>n</em> = <em>w</em> = <em>mg</em> = 112.5 N ≈ 113 N
where <em>m</em> = 12.5 kg and <em>g</em> = 9.80 m/s².
The minimum force <em>F</em> needed to overcome <u>maximum</u> static friction <em>f</em> and get the object moving is
<em>F</em> > <em>f</em> = 0.50 <em>n</em> = 61.25 N ≈ 61.3 N
which means a push of <em>F</em> = 15 N is not enough the get object moving and so it stays at rest in equilibrium. While the push is being done, the net force on the object is still zero, but now the horizontal push and static friction cancel each other.
So:
(a) Your free body diagram should show the object with 4 forces acting on it as described above. You have to draw it to scale, so whatever length you use for the normal force and weight vectors, the length of the push and static friction vectors should be about 61.3/112.5 ≈ 0.545 ≈ 54.5% as long.
(b) Friction has a magnitude of 15 N because it balances the pushing force.
(c) The object is in equilibrium and not moving, so the acceleration is zero.
Answer:

Explanation:
Force is equal to the product of mass and acceleration.

We know the mass, but not the acceleration. Therefore, we must calculate it before we can calculate force.
1. Calculate Acceleration
Acceleration is the change in velocity over the change in time.

The final velocity is 10 meters per second and the initial velocity is 4 meters per second. The time is 1 second.

Substitute the values into the formula.

Solve the numerator.

Divide.

2. Calculate Force
Now we know the acceleration and the mass.

Substitute the values into the fore formula.

Multiply.

- 1 kilogram meter per square second is equal to 1 Newton.
- Our answer of 12 kg*m/s² is equal to 12 Newtons

The force applies to the ball was <u>12 Newtons.</u>
Answer:
Potential energy is converted into kinetic energy by a force. For example, when you pick up a rock, you work against gravity to give it some potential energy. And then when you drop it, the gravitational force causes the rock to accelerate towards the ground
Explanation:
At Z ... slowest speed
At Y ... fastest speed
At X ... medium speed
Wherever it is in its orbit, the line from the planet to the Sun smears over the same amount of area every second.
That's Kepler's second law of planetary motion.
The reason this happens is: That's how gravity works. (A better explanation is available, but first you have to be able to twirl calculus and solid geometry in the air on long sticks.)
Your sense of well being related to your ability to persevere through a challenge because you being fit gives you boost of you being able to things than if your not really in shape so you being in shape help you get through challenges and your stamina is more stable