Answer:
C) 50 m/s
Explanation:
With the given information we can calculate the acceleration using the force and mass of the box.
Newton's 2nd Law: F = ma
- 5 N = 1 kg * a
- a = 5 m/s²
List out known variables:
- v₀ = 0 m/s
- a = 5 m/s²
- v = ?
- Δx = 250 m
Looking at the constant acceleration kinematic equations, we see that this one contains all four variables:
Substitute known values into the equation and solve for v.
- v² = (0)² + 2(5)(250)
- v² = 2500
- v = 50 m/s
The final velocity of the box is C) 50 m/s.
Answer:first law
Explanation:
it states the a body in motion or rest maintain its state until an external force is acted on it
Answer:
5.5 x 10^5 N/C
Explanation:
t = 0.001 s
Δp = - 8.8 x 10^-17 kg m /s
Force is equal to the rate of change of momentum.
F = Δp / Δt
F = (8.8 x 10^-17) / 0.001 = 8.8 x 10^-14 N
q = 1.6 x 10^-19 C
Electric field, E = F / q = (8.8 x 10^-14) / (1.6 x 10^-19)
E = 5.5 x 10^5 N/C
Hello!!
Here we have a simple matter of conservation of energy. ME=PE+KE.
At point A we have PE=mgh and KE=1/2mv^2. At point A all we have is PE since the coaster isn’t rolling yet. But by conservation of energy, we know that it will have enough energy to roll down and get to and equal height on another hill. Providing we are neglecting friction and drag and resistance forces which we are in this case. So we can conclude that the KE will be greater at Point B since ME=PE+KE and for ME to remain the same and we know the PE is less on lower hill, so we can conclude that KE on lower hill is greater to keep ME the same and have conservation of energy.
Hope this helps you understand the concept!! Any questions please just ask!! Thank you so much!!