Answer:
Explanation:
= Intensity of unpolarized light =
= Angle of the filter =
Intensity of light is given by
The intensity of light detected by the camera is
Answer:
M[min] = M[basket+people+ balloon, not gas] * ΔR/R[b]
ΔR is the difference in density between the gas inside and surrounding the balloon.
R[b] is the density of gas inside the baloon.
====================================
Let V be the volume of helium required.
Upthrust on helium = Weight of the volume of air displaced = Density of air * g * Volume of helium = 1.225 * g * V
U = 1.225gV newtons
----
Weight of Helium = Volume of Helium * Density of Helium * g
W[h] = 0.18gV N
Net Upward force produced by helium, F = Upthrust - Weight = (1.225-0.18) gV = 1.045gV N -----
Weight of 260kg = 2549.7 N
Then to lift the whole thing, F > 2549.7
So minimal F would be 2549.7
----
1.045gV = 2549.7
V = 248.8 m^3
Mass of helium required = V * Density of Helium = 248.8 * 0.18 = 44.8kg (3sf)
=====
Let the density of the surroundings be R
Then U-W = (1-0.9)RgV = 0.1RgV
So 0.1RgV = 2549.7 N
V = 2549.7 / 0.1Rg
Assuming that R is again 1.255, V = 2071.7 m^3
Then mass of hot air required = 230.2 * 0.9R = 2340 kg
Notice from this that M = 2549.7/0.9Rg * 0.1R so
M[min] = Weight of basket * (difference in density between balloon's gas and surroundings / density of gas in balloon)
M[min] = M[basket] * ΔR/R[b]
Answer:
b.
Explanation:
In case of Single Slit, diffraction will occur.
Then In Single slit Diffraction, width of central fringe is
where D= distance b/w screen and slit
a= slit width
\lambda = wavelength
Thus if Screen width increases keeping other factors same then width of central fringe becomes narrower as
On increasing the slit width the central bright fringe width The width of the central bright fringe becomes narrower.
Answer:
when you are pushing the pedal you are causing the pedal to move done and then you will move 100cm
Explanation:
10 cm= 100 cm moved so when you move you will move because you are timeing the 10 by 100 to get the spped