1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
3 years ago
6

Which expressions are equivalent to \dfrac{4^{-3}}{4^{-1}} 4 −1 4 −3 ​ start fraction, 4, start superscript, minus, 3, end super

script, divided by, 4, start superscript, minus, 1, end superscript, end fraction ? Choose 2 answers: Choose 2 answers: (Choice A) A \dfrac{4^1}{4^3} 4 3 4 1 ​ start fraction, 4, start superscript, 1, end superscript, divided by, 4, cubed, end fraction (Choice B) B \dfrac{1}{4^{2}} 4 2 1 ​ start fraction, 1, divided by, 4, squared, end fraction (Choice C) C 4^3\cdot 4^14 3 ⋅4 1 4, cubed, dot, 4, start superscript, 1, end superscript (Choice D) D (4^{-1})^{-3}(4 −1 ) −3
Mathematics
1 answer:
Slav-nsk [51]3 years ago
4 0

Answer:

\dfrac{4^{-3}}{4^{-1}} = \dfrac{4^{1}}{4^{3}}

\dfrac{4^{-3}}{4^{-1}} = \dfrac{1}{4^{2}}

Step-by-step explanation:

Given

\dfrac{4^{-3}}{4^{-1}}

Required

Choose equivalent expressions

Choosing the first answer:

\dfrac{4^{-3}}{4^{-1}}

Split expressions

4^{-3} * \frac{1}{4^{-1}}

Apply laws of indices: (a^{-b} = \frac{1}{a^b})

\frac{1}{4^3} * \frac{1}{4^{-1}}

Apply laws of indices: (a^{-b} = \frac{1}{a^b})

\frac{1}{4^3} * \frac{1}{1/4}

\frac{1}{4^3} * \frac{4^1}{1}

\frac{4^1}{4^3}

Hence:

\dfrac{4^{-3}}{4^{-1}} = \dfrac{4^{1}}{4^{3}}

Choosing the second:

\dfrac{4^{-3}}{4^{-1}}

Apply law of indices: (\frac{a^m}{a^n} = a^{m-n})

So,

\dfrac{4^{-3}}{4^{-1}} = 4^{-3-(-1)}

\dfrac{4^{-3}}{4^{-1}} = 4^{-3+1)}

\dfrac{4^{-3}}{4^{-1}} = 4^{-2}

Apply law of indices: (a^{-b} = \frac{1}{a^b})

So:

\dfrac{4^{-3}}{4^{-1}} = \dfrac{1}{4^{2}}

You might be interested in
Am I correct?<br> will mark brainliest
jeka94

Answer:

Rhombus

Step-by-step explanation:

Mark as Brainllest

8 0
3 years ago
Will mark brainliest im in a rush so please help me if you can
Afina-wow [57]

Answer:

B!

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Find an equation of the line that passes through the points (5,- 4) and (2,-2).
Andru [333]

Answer:

y=-2/3x - 2/3

Step-by-step explanation:

4 0
3 years ago
Please don't delete my question! Here they are:
Alinara [238K]

Answer:

1. 14/15

2. 5 7/8

3. 81.25%

Step-by-step explanation:

1. (fraction) 7/9 divided by 5/6 (fraction)

7/9 ÷ 5/6 =

= 7/9 * 6/5

= (7 * 6)/(9 * 5)

= 42/45

= 14/15

2.

1 3/8 + 4 1/2 =

= 1 + 3/8 + 4 + 1/2

= 1 + 4 + 3/8 + 4/8

= 5 + 7/8

= 5 7/8

3.

percent = part divide by whole times 100

13/16 * 100 =

= 81.25%

4 0
4 years ago
Read 2 more answers
Give all solutions if the nonlinear system of equations, including those with no real complex components.
konstantin123 [22]
\left\{\begin{array}{ccc}y=x^2+6x\\4x-y=-24\end{array}\right\\\\substitute:\\\\4x-(x^2+6x)=-24\\\\4x-x^2-6x+24=0\\\\-x^2-2x+24=0\\\\a=-1;\ b=-2;\ c=24\\\\\Delta=b^2-4ac

\Delta=(-2)^2-4\cdot(-1)\cdot24=4+96=100\\\\x_1=\frac{-b-\sqrt\Delta}{2a};\ x_2=\frac{-b+\sqrt\Delta}{2a}\\\\\sqrt\Delta=\sqrt{100}=10\\\\x_1=\frac{2-10}{2\cdot(-1)}=\frac{-8}{-2}=4;\ x_2=\frac{2+10}{2\cdot(-1)}=\frac{12}{-2}=-6\\\\y_1=4^2+6\cdot4=16+24=40;\ y_2=(-6)^2+6\cdot(-6)=36-36=0\\\\Answer:\\x=4\ and\ y=40\ or\ x=-6\ and\ y=0
4 0
3 years ago
Read 2 more answers
Other questions:
  • How to solve 6 - t &lt; 12
    12·1 answer
  • If the length of the side PQ is 5 inches, what are the possible lengths of the other two sides?
    8·1 answer
  • Which of the figures appear to be congruent?
    7·1 answer
  • UW = m and WX = y + 14 Write an expression for UX.
    6·1 answer
  • Ken paid $12 for two magazines the cost of each magazine was a multiple of $3 what are the possible prices of the magazines
    6·1 answer
  • 8 out of 10 words were correct what percentage of the word spelled correctly
    7·1 answer
  • A rectangular garden has an area of 7,344 square meters. If the length of the garden is 34 meters, then what is the perimeter?
    6·1 answer
  • What would be the angle for M
    7·1 answer
  • Find the slope of the line shown on the graph to the right.
    10·1 answer
  • 14. Solve the equation using the Zero Product Property
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!