It is true yes :) happy to help
Answer:
youre gonna have to include the answers for me to help
Explanation:
Answer:
173.83 mmHg is the vapor pressure of a ethylene glycol solution.
Explanation:
Vapor pressure of water at 65 °C=
Vapor pressure of the solution at 65 °C= 
The relative lowering of vapor pressure of solution in which non volatile solute is dissolved is equal to mole fraction of solute in the solution.
Mass of ethylene glycol = 22.37 g
Mass of water in a solution = 82.21 g
Moles of water=
Moles of ethylene glycol=



173.83 mmHg is the vapor pressure of a ethylene glycol solution.
"Silver chloride is essentially insoluble in water" this statement is true for the equilibrium constant for the dissolution of silver chloride.
Option: b
<u>Explanation</u>:
As silver chloride is essentially insoluble in water but also show sparing solubility, its reason is explained through Fajan's rule. Therefore when AgCl added in water, equilibrium take place between undissolved and dissolved ions. While solubility product constant
for silver chloride is determined by equilibrium concentrations of dissolved ions. But solubility may vary also at different temperatures. Complete solubility is possible in ammonia solution as it form stable complex as water is not good ligand for Ag+.
To calculate
firstly molarity of ions are needed to be found with formula: 
Then at equilibrium cations and anions concentration is considered same hence:
![\left[\mathbf{A} \mathbf{g}^{+}\right]=[\mathbf{C} \mathbf{I}]=\text { molarity of ions }](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%3D%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D%3D%5Ctext%20%7B%20molarity%20of%20ions%20%7D)
Hence from above data
can be calculated by:
= ![\left[\mathbf{A} \mathbf{g}^{+}\right] \cdot[\mathbf{C} \mathbf{I}]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cmathbf%7BA%7D%20%5Cmathbf%7Bg%7D%5E%7B%2B%7D%5Cright%5D%20%5Ccdot%5B%5Cmathbf%7BC%7D%20%5Cmathbf%7BI%7D%5D)