Answer:
λ = 0.38 ×10⁻⁹ m
Explanation:
Given data:
Wavelength of xray = ?
Frequency of xray = 7.8 ×10¹⁷ Hz
Solution:
Formula:
Speed of light = wavelength × frequency
speed of light = 3×10⁸ m/s
Now we will put the values in formula.
3×10⁸ m/s = λ × 7.8 ×10¹⁷ Hz
λ = 3×10⁸ m/s / 7.8 ×10¹⁷ Hz
Hz = s⁻¹
λ = 3×10⁸ m/s / 7.8 ×10¹⁷s⁻¹
λ = 0.38 ×10⁻⁹ m
Answer : The volume of pure diamond is 
Explanation : Given,
Density of pure carbon in diamond = 
Moles of pure diamond = 23.7 moles
Molar mass of carbon = 12 g/mol
First we have to calculate the mass of carbon or pure diamond.
Molar mass of carbon = 12 g/mol

Now we have to calculate the volume of carbon or pure diamond.
Formula used:

Now putting all the given values in this formula, we get:

Volume = 
As we know that:

So,
Volume = 
Volume = 
Therefore, the volume of pure diamond is 
<h3>
Answer:</h3>
0.50 mol SiO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
30 g SiO₂ (sand)
<u>Step 2: Identify Conversions</u>
Molar Mass of Si - 28.09 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of SiO₂ - 28.09 + 2(16.00) = 60.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig figs and round. We are given 2 sig figs.</em>
0.499251 mol SiO₂ ≈ 0.50 mol SiO₂
Answer:
4.81 moles
Explanation:
The total pressure of the gas = Pressure at which gauge reads zero + pressure read by it.
Pressure at which gauge reads zero = 14.7 psi
Pressure read by the gauge = 988 psi
Total pressure = 14.7 + 988 psi = 1002.7 psi
Also, P (psi) = P (atm) / 14.696
Pressure = 1002.7 / 14.696 = 68.2297 atm
Temperature = 25 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
68.2297 atm × 1.5 L = n × 0.0821 L.atm/K.mol × 298.15 K
⇒n = 4.81 moles
Answer:
Noble gases
Explanation:
nobles gases have their outer energy level complete