Answer:
C. 0.4.
Explanation:
<em>∵ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) = (no. of moles acetic acid)/(no. of moles of acetic acid + no. of moles of water).</em>
<em></em>
- no. of moles of acetic acid = 2, no. of moles of water = 3.
- Total no. of moles = no. of moles of acetic acid + no. of moles of water = 2 + 3 = 5.
<em>∴ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) =</em> (2)/(5)<em> = 0.4.</em>
Answer:
31395 J
Explanation:
Given data:
mass of water = 150 g
Initial temperature = 25 °C
Final temperature = 75 °C
Energy absorbed = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 75 °C - 25 °C
ΔT = 50 °C
now we will put the values in formula
q = m . c . ΔT
q = 150 g × 4.186 J/g.°C × 50 °C
q = 31395 J
so, 150 g of water need to absorb 31395 J of energy to raise the temperature from 25°C to 75 °C .
Answer:
1.0 moles of N2
Explanation:
since
1.0 × avogadro's no# = same answer for SO2 and N2
avogadro's no#= 6.02× 10²³
Radio waves have the lowest energy, but the longest wavelength. So radio waves is the answer. Good luck on the rest and message me for more help.
Answer:
Evaporated via combustion.
Explanation:
The loss on ignition (LOI) and Ash content are inorganic analytical techniques used to determine the percentage by mass of hydrocarbon in compounds. This process allows volatile matter and possibly impurities found in a material to evaporate, leaving behind the true chemical constituents of the material.
The 10kg lost could be moisture content of the tree, or other volatile matter which has escaped on combustion of the tree.